Spectroscopy Application on Connective Tissue and Prostate Cancer

Principal Investigator: Brianna Pope

What is Spectroscopy?

Spectroscopy provides non destructive and non-invasive medical diagnostics with optical techniques able to be used in real time. Some nonmedical uses of spectroscopy are applied in astronomy and geography.

Raman Spectroscopy

¹Raman bands arise due to scattering of light by vibrational modes in a molecule.

² Cancer cell detection can be difficult and invasive for benign and malignant carcinomas. Some cancer development is also asymptomatic. Spectroscopy determines chemical characterization and composition.

References

Pasco. 2022. What is Spectroscopy?, [online] Available at:
https://www.pasco.com/products/guides/what-is-spectroscopy (Accessed 1 June 2022).

²Gaba, F., Tipping, W. J., Salji, M., Faulds, K., Graham, D., & Ampt. Leung, H. Y. (2022, March 17). Raman spectroscopy in prostate cancer: Techniques, applications and advancements. Cancers. Retrieved June 1, 2022, from https://www.ncbi.mlm.iip.gov/pmc/articles/PMC8946151.

³Querido, W., Kandel, S., & Pleshko, N. (2021, February 9). Applications of vibrational spectroscopy for analysis of connective tissues. MDPI. Retrieved June 1, 2022, from https://www.mdpi.com/1420-3/049/76/1/92?

⁴ YouTube. (2020). How In Vivo Imaging Works: Bioluminescence & Depression... and more! YouTube. Retrieved June 1, 2022, from https://www.youtube.com/watch?vvvZqtINMLhi8.

How Does Spectroscopy Benefit Us?

- Optical imaging: Detection of visible light photons:
 - Bioluminescence: Light produced by enzymes
 - Fluorescence: Light emitted from molecular probes

- o Light is produced by
- Light is emitted by a molecular probe, following its absorption of "excitation light"

Optical imaging is particularly useful for visualizing soft tissues, similar to a mri.

The Spectra

ble 3. Typical absorbance bands of relevance to the analysis of NIR spectra of connective tissues. [41,42,43,44,45,46,47,48,49].

Frequency (cm ⁻¹)	Tissue Component
8500	Water (O-H stretching and bending)
7000	Water (O-H stretching)
6688	Protein/collagen (N-H stretching)
5800	Lipid (CH ₂ stretching)
5200	Water (O-H stretching and bending)
4890	Protein/collagen (N-H bending)
4610	Protein/collagen (C-H stretching and deformation)
4310	Proteoplycan (sugar ring vibrations)

The spectra provides info on chemical composition ultimately helping in disease detection.